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To calibrate an optical transition edge sensor (TES), for each pulse of the light source (e.g. pulsed laser),
one must determine the ratio of the expected number of photons that deposit energy and the expected
number of photons created by the laser. Based on the estimated pulse height generated by each energy
deposit, we form a pulse height spectrum with features corresponding to different numbers of deposited
photons. We model the number of photons that deposit energy per laser pulse as a realization of a Pois-
son process, and the observed pulse height spectrum with a mixture model method. For each candidate
feature set, we determine the expected number of photons that deposit energy per pulse and its associated
uncertainty based on the mixture model weights corresponding to that candidate feature set. From train-
ing data, we select the optimal feature set according to an uncertainty minimization criterion. We then
determine the expected number of photons that deposit energy per pulse and its associated uncertainty
for test data that is independent of the training data. Our uncertainty budget accounts for random mea-
surement errors, systematic effects due to mismodeling feature shapes in our mixture model, and possible
imperfections in our feature set selection method. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

In our experiment, both background photons and photons pro-
duced by a pulsed-laser source deposit energy in a Transition
Edge Sensor (TES) [1, 2]. Each energy deposit generates a wave-
form from which we determine a pulse height. We attribute
features in the pulse height spectrum to a blackbody radiation
background process as well as energy deposits of photons cre-
ated by the pulsed-laser source. We assume that other back-
ground sources such as cosmic rays are negligible. Our primary
goal is to estimate the expected number of photons that deposit
energy per pulse. This expected value is less than the expected
value of photons created by each pulse of the laser because the
probability that each photon creates an energy deposit is less
than 1. To calibrate a TES, one must determine its photon de-
tection efficiency which is the ratio of these expected values.
One can estimate the expected value of the number of photons
created by each laser pulse and its associated uncertainty with
methods from [3]. In this work, we present new methods to
estimate the expected number of photons deposited in the TES
per pulse, and its associated uncertainty based on mixture model
analysis of TES pulse height spectra. Given these mixture model
analysis results, and earlier analyses based on methods from [3],
one can determine the photon detection efficiency of a TES and
its associated uncertainty. Here, we focus solely on the mixture

model analysis that can be implemented in the TES calibration
procedure.

Many researchers have measured TES detection efficiency
and performed detector tomography [4–7]. In [4], the mean num-
ber of photons deposited in the TES and its associated random
uncertainty (but not systematic uncertainties) were determined
by fitting multiple Gaussian peaks to pulse height spectra where
the amplitude of each peak was a product of a constant and a
Poisson probability term. Here, we determine the mean number
of photons deposited by a pulsed laser with a mixture model
approach and quantify components of uncertainty due to both
random effects and systematic effects. We also select feature sets
based on estimated mixture model weights determined from the
feature according to an uncertainty minimization criterion. In
Section 3.D, we demonstrate that our feature selection fails if we
replaced our mixture model weights with weights determined
from a multiple Gaussian fit like in [4].

In Section 2, we discuss experimental details. In Section 3 we
discuss our method for determining a pulse height from a wave-
form produced by energy deposits in the TES, a mixture model
[8, 9] method to determine the expected number of pulsed-laser
photons per pulse that deposit energy in the TES, and a method
to select the optimal set of features for determining the expected
number of photons that deposit energy in the TES. In Section
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4, we fit mixture models to pulse height data acquired from
two different experiments performed at the National Institute
of Standards and Technology (NIST) and estimate the expected
number of photons per pulse that deposit energy in the TES. The
quality of the data from the two different experiments varies
dramatically. For each experiment, we quantify components
of uncertainty due to random measurement errors, imperfect
modeling of feature shapes, and possible imperfect performance
of our feature set selection method which has the potential to
reduce uncertainty in general applications. For discussion of
different but related mixture model analyses of TES spectra, see
[10, 11].

2. EXPERIMENTAL DETAILS

Optical TESs are energy-resolving single-photon detectors.
When a TES is illuminated with a laser pulse with a random
number of photons of the same energy, one can determine the
expected number of photons in the pulse [4, 12]. In general, for
each pulse, the observed pulse height is a realization of a random
variable with a distribution that depends on the unobserved
number of photons deposited by the laser. Further, spectral fea-
tures corresponding to different numbers of deposited photons
overlap. [10, 13, 14]. Typically, a sum of Gaussians are fit to the
pulse height spectrum where the amplitude of each Gaussian is
a product of a constant and a Poisson probability term. Given a
sufficiently accurate estimate of the incident photon rate, one can
determine detection efficiencies as high as 0.98 [4, 7], and their
associated uncertainties and/or coverage intervals. For the case
where multiple-photon energy deposits occur with negligible
probability, the expected number of photons that deposit energy
in a TES can be determined in ’click’ detector experiments where
one detects an electrical pulse with a shape that is independent
of the number of absorbed photons [15].

Fig. 1. Schematic of measurement system. The combination of
a fiber beam splitter (FBS) and variable fiber attenuator (VFA)
establishes a reliable method to predict the output power at
the device under test (DUT) by measuring the power ratio at
both fiber outputs with two optical fiber power meters (PM
and PMmon). The input VFA (VFAinput) is used to attenuate
and adjust the photon rate at the DUT.

Our experiment setup (see Figure 1) is the same as the experi-
mental setup described in [3]. In our experiment, a fiber-coupled,
pulsed-diode laser produces photons in a weak coherent state
with wavelength (energy) of 1553 nm (0.8 eV) at a repetition rate
of 50 kHz and a pulse width and mean power of approximately
100 ns and 2 µW respectively. The laser pulses are directed to
a variable fiber attenuator (VFAinput) and a fiber beam splitter
(FBS). The high-power output port is directed to a fiber-coupled
monitor power meter (PMmon). The low-power output is di-
rected to a second variable fiber attenuator (VFA). With the VFA,

one can vary the ratio of these powers. Determination of the
photon rate at the device under test (DUT), in our case a TES, is
done as follows. With the VFAinput at the lowest attenuation
setting, the individual power on PMmon and PM are recorded.
These power measurements determine the monitor-to-output
ratio between PMmon and the end of the fiber at PM. To mea-
sure the photon rate at the DUT, we increase the attenuation of
VFAinput so that photon rates on the order of 1 photon per laser
pulse at the end of the fiber through monitoring the laser power
and applying the measured monitor-to-output ratio. We then
splice the DUT fiber to the fiber exiting from the FBS. The rate
at which our data acquisition system records the output wave-
forms produced by the TES is 10 million samples per second.
The TESs, with a critical temperature of approximately 170 mK,
were optimized for an operating wavelength of 1550 nm and op-
erated in an adiabatic demagnetization refrigerator at a constant
temperature of 100 mK. We present data for two different TESs.
In Experiment A, the TES acquired high signal-to-noise data. In
Experiment B, the TES acquired low signal-to-noise data.

3. ANALYSIS METHODS

A. Pulse Height Estimation
In our pulsed-laser experiment, we measure a waveform and the
associated pulse height generated by each pulse. We determine
each pulse height as the difference between the maximum value
of the waveform and the mean value of the five earliest values of
the waveform. We report results for two experiments performed
under different conditions – Experiment A and Experiment B.
For Experiment A, we report results for two cases. In the primary
analysis, outlier waveforms are excluded from the analysis. In
a second analysis, all waveforms are analyzed. We denote the
data analyzed for these two cases as the “filtered" data and
the “unfiltered" data. We attribute outlier waveforms to random
photon energy deposits not produced by our pulsed-laser source.
We also report results for unfiltered Experiment B data.

B. Mixture Model
We model the pulse height probability density function (pdf)
with a mixture model [8, 9]. The mixture model pdf, fmix, is

fmix(x) =
kmax

∑
k=0

wk f (θk, x), (1)

where f (θk, x) is the pdf for an event due to the deposit of k
photons from the pulsed-laser source. The weights (wk where
k=0,1,2,3, . . . , kmax) are non-negative and sum to 1. That is,

kmax

∑
k=0

wk = 1. (2)

We determine the parameters of the mixture model and their
weights based on unbinnned pulse height data, (x1, x2, ...xN)
where N is the total number pulse heights, with a maximum
likelihood method. In this approach, we maximize the log-
likelihood function of the data, log L, where

log L =
N

∑
i=1

log ( fmix(xi) ), (3)

as a function of the weights and the distributional parameters
(under the assumption that measured pulse heights are realiza-
tions of independent random variables).
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In our studies, kmax is no larger than 5. For each case of inter-
est, we represent the observed pulse height data as a histogram.
For each bin of the histogram, we predict the expected number
of counts as the product of the integral (from the lower to the up-
per endpoint of the bin) of fmix(x) and a scale factor. We choose
the scale factor so that the sum (over all bins) of the observed
counts and the sum of the predicted counts in the histogram
agree.

In this work, we consider both a normal (Gaussian) mixture
model and a gamma mixture model. In the Gaussian mixture
model, θbg = (µb, σb) where µb and σb are the mean and stan-
dard deviation of Gaussian random variable. For a k− photon
energy deposit, θk = (µk, σk). The pdf for a Gaussian random
variable is, for −∞ ≤ x ≤ ∞,

f (µ, σ, x) =
1√
2πσ

exp(
−(x− µ)2

2σ2 ). (4)

For a gamma random variable, the associated pdf is, 0 ≤ x ≤ ∞,

f (β, γ, x) =
1

βΓ(γ)
(

x
β
)γ−1 exp(− x

β
), (5)

where γ > 0 and β > 0, and the Γ function is defined as

Γ(a) =
∫ ∞

t=0
ta−1 exp(−t)dt. (6)

For each model, we determine the weights and the distribu-
tional model parameters by maximizing the likelihood function
of the unbinned measured pulse heights with the expectation-
maximization (EM) algorithm [16]. In particular, we imple-
ment the EM algorithm for the normal and gamma models with
the public domain R [17] functions “normalixEM" and “gam-
mamixEM" from the mixtools package [18]. We halt the EM
algorithm when the change of the log-likelihood at successive
iterations is less than 10−8. Initial values for the mean values of
the pdfs in the mixture are determined from the observed fea-
tures with a peak-finding function [19]. Initial values for other
parameters that determine the standard deviation of the pdfs
are based on the analysis of the dispersion of each feature in the
pulse height spectra.

C. Estimation of expected number of photons deposited per
pulse

We model the number of photons created per pulse as a Poisson
random variable with expected value θc. Not all the created
photons deposit energy in the TES. Photons can be lost in transit
from the laser to the TES. Also, it is possible for a photon to
scatter off the TES detector without depositing energy. Based on
physical considerations, whether a particular photon deposits
energy or not in the TES has no influence on whether any other
photon does or does not. Because of this independence, if Nc
photons are created by the laser, and pdep is the probability that
a photon deposits its energy in the TES, we model the number of
photons that deposit energy as a binomial random variable with
expected value Nc pdep where 0 ≤ pdep ≤ 1. It follows that the
number of photons that deposit energy per pulse is a realization
of a Poisson process with expected value θdep = pdepθc.

Our estimate of θdep is based on the estimate of the weights
associated with the features generated by photon energy deposit
events. Given the theoretical weight for a j−photon deposit
feature, w(j), we define a normalized weight,

w∗(j) =
w(j)

∑j w(j)
, (7)

where the j index denotes features that are included in the anal-
ysis to determine θdep. For instance, if we include all the photon
energy deposit weights, then j would range from 0 to kmax. How-
ever if we exclude the last weight from the analysis, then j would
range from 0 to kmax -1.

Here, we assume that the number of photons in a pulse is
a realization of Poisson random variation with expected value
θdep. Based on this assumption, we have

w∗(j) = f (j, θdep) =
Pr(j|θdep)

∑j Pr(j|θdep)
, (8)

where the probability that j photons deposit energy is

Pr(j|θdep) =
exp(−θdep)θ

j
dep

j!
. (9)

Given that the mixture model analysis estimate of the theoretical
value w∗(j) is ŵ∗(j), we estimate θdep by the method of nonlinear
least squares by minimizing

∑
j
(ŵ∗(j)− f (j, θdep))

2 (10)

as a function of θdep.

D. Feature selection
In our analysis of experimental results, we are free to deter-
mine θdep from weights determined from all the features due
to photon energy deposits or any subset of these features. We
select the optimal subset for analysis according to an uncertainty
minimization criterion. To guard against overly optimistic un-
certainties for θdep, we identify the optimal subset from training
data that does not overlap with the primary data of interest.
We denote this primary data as the test data. We randomly
split the observed pulse height data into training data and test
data with a resampling without replacement method. The N
measured pulse heights are indexed according to their obser-
vation time. The resampling without replacement method ran-
domly permutes the order of the set of integers (1, 2, 3, . . . N).
We simulate a permutation of the set of integers with the func-
tion “sample" in R [17]. Pulse heights with an associated index
in the first half of the permuted integers are assigned to the train-
ing data. The remaining pulse heights are assigned to the test
data. To illustrate our method, consider the simple case of four
measurements x1, x2, x3, x4 acquired at times t1, t2, t3, t4 where
t1 < t2 < t3 < t4. If the random permutation of (1, 2, 3, 4) were
(2, 4, 3, 1), the training data would be (x2, x4), and the test data
would be (x3, x1).

We determine θdep and its associated uncertainty from the test
data based on the feature subset identified from the training data.
One could determine weights based on the fitting approach in
[4]. However, if we replaced our mixture model weights with
weights determined from fitting methods like [4] in Eq. 10,
all feature subsets would yield the same estimate of θdep and
the same estimate of its associated random uncertainty. Hence,
our feature selection method is not feasible if based on weights
determined from the approach in [4]. This follows from the
observation that if weights are determined from the [4] fitting
approach, the estimated normalized weight (see Eq. 7) for the kth

feature is A−1H(k) exp(−θ̂dep)( θ̂dep )k

k! where θ̂dep is our estimate
determined from the fit to full pulse height spectrum, and

A =
kmax

∑
k=0

H(k)
exp(−θ̂dep)( θ̂dep )k

k!
, (11)
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where H(k) = 1 if k is in the feature set, and H(k) = 0 if k is not
in the feature set.

4. RESULTS

A. Experiment A: high data quality
For Experiment A, we analyze pulse heights determined from
filtered data where outlier waveforms are excluded from the
analysis. We identify a waveform as an outlier if the first time
for which the waveform exceeds -25 mV is less than 0.5 µs or
larger than 1.15 µs after the expected arrival time of the pulse.
The threshold of -25 mV corresponds to an estimate of the mean
baseline (-62.3 mV) plus 3.2 times the standard uncertainty of
the measured baseline. The fraction of waveforms that are iden-
tified as outliers is 0.022. We illustrate our acceptance/rejection
method for a small number (400) of the total number (1,630,104)
of waveforms acquired in Figure 2.

In Table 1, we show estimated model parameters determined
from the training data for a normal mixture model. In addition
to a “0-photon" feature to due to background photons and no-
photon events, there are five other features corresponding to
energy deposits of k−photons (deposited by the pulsed laser)
where k = 1, 2, . . . , 5. We excluded a seventh feature from the
analysis because it had a very low signal-to-noise ratio. For
each feature, we show the estimate of the mean µ and standard
deviation σ of the associated normal distribution, and the cor-
responding weight for the feature. The standard errors of the
parameter estimates are obtained by nonparametric bootstrap
resampling [20] of the observed pulse heights.

Table 1. Normal mixture model results for filtered Experiment
A data. Bootstrap standard errors (components of uncertainty
due to random measurement errors) are shown in parentheses
for each estimate. For instance, 0.22006(45) means that the es-
timate and its associated bootstrap standard error are 0.22006
and 0.00045 respectively.

Feature µ (mV) σ (mV) Weight

Training Data

0-photon 19.90(03) 10.87(02) 0.22006(45)

1-photon 89.79(03) 15.02(03) 0.33812(53)

2-photon 165.71(04) 14.89(03) 0.25308(51)

3-photon 233.14(06) 14.50(05) 0.12652(41)

4-photon 292.32(10) 14.24(11) 0.04899(29)

5-photon 343.62(17) 11.28(10) 0.01323(15)

Test Data

0-photon 19.88(03) 10.91(02) 0.22080(49)

1-photon 89.73(03) 15.03(03) 0.33802(53)

2-photon 165.74(04) 14.95(03) 0.25204(49)

3-photon 233.26(06) 14.46(05) 0.12720(40)

4-photon 292.71(10) 14.45(12) 0.04885(29)

5-photon 343.92(18) 11.12(11) 0.01308(15)

In Table 2, we list estimates of θdep determined for different
choices of the features analyzed for the filtered training data. For

Table 2. Six-feature, normal mixture model results for filtered
Experiment A data. Here, we estimate θdep for different sub-
sets of the features. The nomenclature for the feature set de-
notes the range of features from which we determine θdep. For
instance, the feature set “2-4" corresponds to results based on
analysis of the weights associated with 2-photon, 3-photon
and 4-photon features. We determine θdep from the test data
for the feature set that yields the lowest value of usubtot for the
training data. From the test data, we also estimate θdep from
the feature set that yields the second lowest value of the com-
bined uncertainty usubtot for the training data. From the two
estimates of θdep for the test data, we determine a component
of uncertainty due to imperfect performance of our feature se-
lection method. Uncertainty due to imperfect feature selection,
u f eature, for the training and test data are 0.0017 and 0.0022
respectively.

Feature θdep uran θdep umodel usubtot

set Normal Gamma

analyzed Model Model

Training Data

2-5 1.5048 0.0039 1.5047 0.0001 0.0039

2-4 1.5108 0.0044 1.5083 0.0014 0.0046

3-5 1.5132 0.0076 1.5090 0.0024 0.0080

1-5 1.5001 0.0022 1.5146 0.0083 0.0086

1-4 1.5018 0.0023 1.5163 0.0083 0.0086

0-5 1.5101 0.0015 1.4953 0.0086 0.0087

0-4 1.5114 0.0016 1.4953 0.0093 0.0094

0-3 1.5107 0.0018 1.4924 0.0106 0.0107

1-3 1.4978 0.0028 1.5159 0.0104 0.0108

0-2 1.5153 0.0024 1.4859 0.0170 0.0172

Test Data

2-5 1.5114 0.0037 1.5141 0.0016 0.0040

2-4 1.5191 0.0042 1.5182 0.0005 0.0042
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each set of features chosen for analysis, we determine estimates
of θdep by nonlinear least squares as described in Section 3.C for
both the normal and the gamma mixture models. For the normal
mixture model, we determine the component of uncertainty of
θdep due to random effects, uran, with the nonparametric boot-
strap method. In a separate analysis, we determine a component
of uncertainty due to imperfect knowledge of the shape of the
features in the mixture model, umodel , based on the difference
between estimates of θdep determined by the normal mixture
model and a gamma mixture model. Following [21], we quantify
this component as the standard deviation of uniform distribu-
tion with width equal to twice the magnitude of the difference
of the estimates. Thus, if the magnitude of the difference of the
two estimates is δ, umodel = 2δ/

√
12. We sort results (see Table

2) determined from the training data according to the values of
a combined uncertainty usubtot where

usubtot =
√

u2
ran + u2

model . (12)

We identify the optimal feature set as the one that yields the
lowest value of usubtot determined from the training data. We
determine θdep from the test data based on this optimal feature
set.

We determine a third component of uncertainty, u f eature, from
the test data that accounts for possible imperfection of our fea-
ture set selection method. We first determine θdep from the test
data for the two feature sets that yield the lowest and second
lowest values of usubtot from the training data. We determine
u f eature as twice the standard deviation of a uniform distribution
with lower and upper bounds equal to the smaller and large
values of these two estimates. Given u f eature, we compute a
combined standard uncertainty utot as

utot =
√

u2
subtot + u2

f eature. (13)

From the filtered Experiment A training data, the selected feature
sets that yield the two lowest values of usubtot are 2-5 and 2-4
(see Table 2.) Based on these two feature sets, for the test data,
our estimate of θdep is 1.5114, usubtot = 0.0040, u f eature = 0.0022,
and hence utot = 0.0046 (see Table 2). We note that if we had
switched the roles of the training and test data in our study,
the resulting sorted order of the feature sets that yield the two
lowest values of usubtot determined from the training data would
be the same.

In Figures 3 and 4, for the “filtered" test data set, we compare
the observed pulse height spectrum to predicted contributions
from each of the six features determined by a normal mixture
model analysis and a gamma mixture model analysis. In Figure
5, we compare the observed pulse height spectrum to the overall
prediction (sum of the predictions from all six features).
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Fig. 2. For the first 400 waveforms acquired in Experiment
A, we show accepted and rejected (outlier) waveforms. Dis-
crimination thresholds (see Section 4.A) that define acceptance
and rejection regions are shown as dashed red lines. The times
shown on x-axis are relative to a reference trigger time.
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Fig. 3. For filtered test data from Experiment A, we compare
the observed pulse height spectrum with the predicted contri-
butions corresponding to each of six features determined for
a normal mixture model analysis. The overall prediction (not
shown) is the sum of the six predictions shown here.
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Fig. 4. For filtered test data from Experiment A, we compare
observed pulse height spectrum with the predicted contribu-
tions corresponding to each of six features determined by a
Gamma mixture model analysis. The overall prediction (not
shown) is the sum of the six predictions shown here.
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Fig. 5. For filtered test data from Experiment A, we compare
observed and overall predicted pulse height spectra. The pre-
dicted spectrum is determined with a normal mixture model.
In (a) and (b), we plot count data on a linear scale and a log
scale respectively.

B. Experiment B: low data quality

We analyze “unfiltered" data from Experiment B. That is, all
observed waveforms are analyzed. We excluded a sixth feature
from the analysis because it had a very low signal-to-noise ratio.
In all, we acquired 2,092,132 waveforms. In the inset of Figure 6b,
we display 400 representative waveforms. We did not develop
a method and associated algorithm to identify and reject pos-
sible outlier waveforms in Experiment B. Whether Experiment
B produced outlier waveforms, and whether any such outliers
significantly affected results may be worthy of further study.

For the normal mixture model, we show estimates of µ and σ
and the corresponding weight for each feature in Table 3 for the
training data. In Table 4, we show estimates of θdep for feature
sets sorted according to usubtot (from lowest to highest). We
select “2-4" as the optimal feature set because it yields the lowest
value of usubtot for the training data.

Table 3. Five-feature normal mixture model results for unfil-
tered pulse height data corresponding to Experiment B data.
Bootstrap standard errors are shown in parentheses.

Feature µ (mV) σ (mV) Weight

Training Data

0-photon 4.629(11) 2.337(06) 0.29460(94)

1-photon 13.945(11) 3.353(12) 0.44021(112)

2-photon 25.776(11) 2.622(11) 0.17815(66)

3-photon 35.399(23) 3.215(39) 0.07259(69)

4-photon 44.364(66) 2.528(29) 0.01444(31)

Test Data

0-photon 4.611(11) 2.332(05) 0.29387(92)

1-photon 13.927(11) 3.379(12) 0.44125(112)

2-photon 25.767(12) 2.607(11) 0.17667(70)

3-photon 35.344(25) 3.288(43) 0.07408(74)

4-photon 44.435(73) 2.495(31) 0.01413(33)

Given the selected feature set “2-4" determined from the train-
ing data, for the test data we determine θdep to be 1.1682 and
umodel = 0.0150. Based on the two feature sets that yield the two
lowest values of usubtot for the training data, we obtain u f eature =
0.0850 and utot = 0.0868 for the test data (see Table 4.) Like in
Experiment A, if we had switched the roles of the training and
test data in our study, the feature sets that yield the two lowest
values of usubtot from the training data would be the same. In
Figure 6 we compared the observed pulse height spectrum to the
overall normal mixture model prediction due to all five features.

5. DISCUSSION

A. Optimal feature set

For both Experiment A and Experiment B, neither the 0-photon
nor the 1-photon feature appear in the selected feature set (see
Tables 2 and 4). Visual evidence (see Figures 3, 4, 5, and 6)
suggests that the 0-photon feature is not as as well-predicted
(compared to other features) by either the gamma model or the
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Table 4. Five-feature, normal mixture model results for unfil-
tered Experiment B data. Here, we estimate θdep for different
subsets of the photon features. For the test data u f eature, is
0.0850.

Feature θdep uran θdep umodel usubtot

set Normal Gamma

analyzed Model Model

Training Data

2-4 1.1473 0.0083 1.1327 0.0084 0.0118

1-3 0.8759 0.0031 0.9078 0.0184 0.0187

1-4 0.8814 0.0028 0.9161 0.0200 0.0202

0-4 1.1369 0.0015 1.0852 0.0299 0.0299

0-3 1.1465 0.0017 1.0895 0.0329 0.0330

2-3 1.2225 0.0150 1.1686 0.0311 0.0345

0-2 1.1700 0.0022 1.1018 0.0394 0.0395

3-4 0.7958 0.0233 0.9567 0.0929 0.0958

Test Data

2-4 1.1682 0.0088 1.1423 0.0150 0.0174

1-3 0.8737 0.0031 0.9102 0.0211 0.0213

normal model. Perhaps this is why our feature selection method
excludes the 0-photon feature. Maybe the 1-photon feature is
not selected because difficulty in modeling the 0-photon feature
affects the accuracy of the mixture model prediction of the 1-
photon due to overlap effects. The order of feature sets that
yield the two lowest values of usubtot was the same for both the
training and test data. This suggests that our feature set selection
method is sound.

B. Experiment A: comparison of results filtered and unfiltered
data

For the filtered Experiment A data, we determine θdep to be
1.5114(46) (see Table 2 and Section 4.A) In an additional study,
we determine results for unfiltered Experimental A data. For
both the filtered data and unfiltered data, the feature set that
yields the minimum value of usubplot for the training data, and
the second lowest value of usubplot for the training data, are
“2-5" and “2-4" respectively. Thus, the optimal feature set deter-
mined by our methods is the same for the both unfiltered and
filtered Experiment A data. From the test data, for the unfiltered
data, we determine θdep to be is 1.5080(45). For completeness,
for the unfiltered Experiment A data, uran = 0.0037, umodel =
0.0012, usubtot = 0.0039 and u f eature = 0.0022. The fraction of
waveforms identified as outliers and excluded from the filtered
data is 0.022. For general applications, as the fraction of out-
liers increases, we expect that the magnitude of the difference
between the estimates of θdep determined from filtered data and
unfiltered data to increase.
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Fig. 6. We compare the observed pulse height spectrum and
the overall predicted pulse height spectrum determined with
a normal mixture model for Experiment B test data. In (a) and
(b), we plot count data on a linear scale and on a log scale
respectively. The inset plot in Figure 6b displays 400 represen-
tative waveforms.

C. Experiment B
For Experiment B, the variation of the estimates of θdep for dif-
ferent sets of features chosen for analysis is greater than what
we observed for Experiment A. Suppose that we define the frac-
tional range, of estimates of θdep over all subsets as

( max(est)−min(est) ) / ( ( max(est) + min(est) )/2 ),

where max(est) and min(est) are the maximum estimate of θdep
and the minimum estimate of θdep respectively. For the unfil-
tered Experiment B training data the fractional range is 0.42. In
contrast, for the filtered Experiment A training data, the frac-
tional range is 0.012. The greater fractional range for Experiment
B could be due to more variability in the Experiment B data
and fewer features to analyze (compared to the Experiment
A). Another possibility is that Experiment B results determined
from the unfiltered data are significantly affected by outliers,
whereas the Experiment A results are not significantly affected
by outliers.

We note that for Experiment A, for k > 0, the estimate of
the width (σ) of the k-photon energy deposit feature decreases
as k increases (see Table 1). However, for Experiment B, σ is
larger for the 3-photon energy deposit feature compared to the
2-photon energy photon feature (see Table 3). Perhaps this can
be attributed to randomness. Or perhaps there are more outliers
in the Experiment B data compared to the Experiment A data.
More study is required to resolve this question.

D. Feature set selection
In our feature set selection method (see Section 3.D), the training
and test data are the same size. In other applications, one might
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consider other splitting schemes. For instance, suppose that the
test data were split into J chunks where each chunk corresponds
to a non-overlapping time interval. One might consider this
splitting scheme for investigation of temporal variations in θdep.
The size of training data might be equated to the size of each of
the J chunks of test data.

E. Future research
Unlike the method in [14], our mixture model approach for de-
termination of θdep does not yield an estimate of the number of
photons deposited by any particular pulse. Instead, our mixture
model yields an estimate of the expected number of photons
in any laser pulse. The task of estimation of the number of
deposited photons and the task of estimation of the expected
number of deposited photons are different tasks. However,
development of method to estimate the number of photons de-
posited for any particular pulse based solely on the observed
pulse height, the estimate of θdep, and the mixture model param-
eters is a worthy research topic. One might construct a mixture
model based on other summary statistics such as the area of the
pulse for a selected time interval or the inner product of a tem-
plate and the pulse. How well such alternative implementations
perform relative to our implementation is a worthy research
topic.

In our experience, the optimum filtering approach [22] yields
features with shapes that deviate slightly from a Gaussian shape
due, in part, to stray photons. Hence, the methods we devel-
oped here for quantification of uncertainty for both random and
systematic effects and feature selection methods might be ap-
plied to analyses based on optimal filtering provided that one
identifies a feature shape pdf that would play the role that the
Gamma pdf played in our study.

6. SUMMARY

We presented a mixture model method to determine the ex-
pected number of photons that deposit energy in a TES per
pulse (θdep) of a laser. The ratio of this estimate and an addi-
tional measurement of the expected number of photons created
per pulse enables one to calibrate a TES. The choice of features
analyzed affects results. From training data, we selected the
optimal set of features for analysis according to an uncertainty
minimization criterion. Based on the feature set determined
from the training data, we determined θdep and its associated
uncertainty from test data that is independent of the training
data. Our reported uncertainty for our determination of θdep
accounts for random measurement error, ambiguity in the math-
ematical form of the mixture model, and possible imperfection
in our feature set selection method.
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